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Motivation

Explanation of Brownian motion
A rough explanation : A grain of pollen immersed into a glass of water　

−→ A result of the repeated collisions of the massive particle
with the numerous lighter but faster light particles (the water
molecules)
−→ IF the states(positions and velocities) of the light
particles (for the same time and between different times) are
INDEPENDENT, then OK by CLT (Central Limit Theorem)

BUT ：the interaction also affects the motion of the light particles
(especially in a potential interaction model)
−→ INDEPENDENT assumption NOT satisfied!

Our aim : Consider a system that evolves according to a classical
Newtonian dynamics (which is consistent with the mentioned
dependence on the past), and study the behavior of the
massive particle when the mass of the light particles
converges to 0.
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Our dynamical model

Rd (d > 1)
massive particle: one, with mass 1,
light particles: ideal gas (definition given later), mass m (m→ 0),
initial condition (X (0),V (0)) ∈ Rd × Rd and ω̃ ∈ Conf (Rd × Rd),
the set of all non-empty closed subsets of Rd × Rd with no cluster point,
here (x , v) ∈ ω̃ means that there exists a light particle with initial
position x and initial velocity v ,
as long as the initial condition (X (0),V (0)) ∈ Rd × Rd and
ω̃ ∈ Conf (Rd × Rd) is given, the system is totally deterministic and
Newtonian, with its Hamiltonian given by

1
2
|V |2 +

∑
(x ,v)∈ω̃

m

2
|v |2 +

∑
(x ,v)∈ω̃

U(X − x)

Here U ∈ C∞
0 (Rd) is the potential function.
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ODEs of the system

Massive particle: one, mass 1, with its state (position and velocity) at
time t written as (X (t),V (t))

light particles: mass m, the state of a light particle with initial
condition (x , v) at time t is written as (x(t, x , v), v(t, x , v))

d

dt
X (m)(t, ω̃) = V (m)(t, ω̃),

d

dt
V (m)(t, ω̃) = −

∑
(x ,v)∈ω̃

∇U(X (m)(t, ω̃)− x (m)(t, x , v , ω̃)),

(X (m)(0, ω̃),V (m)(0, ω̃)) = (X0,V0),

d

dt
x (m)(t, x , v , ω̃) = v (m)(t, x , v , ω̃),

m
d

dt
v (m)(t, x , v , ω̃) = ∇U(X (m)(t, ω̃)− x (m)(t, x , v , ω̃)),

(x (m)(0, x , v , ω̃), v (m)(0, x , v , ω̃)) = (x , v), (x , v) ∈ ω̃.
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initial distribution of the environmental light particles

P̃m(d ω̃) ∈ ℘(Conf (Rd × Rd)): Poisson point process with intensity

λ̃m(dx , dv) = m
d−1

2 ρ
(m

2
|v |2, x − X0

)
dxdv ,

Definition
P̃m(dω̃) is the PPP with intensity λ̃m iff

for any A ∈ B(Rd × Rd ), ♯(ω̃ ∩ A) (the number of light particles with their initial conditions (x, v) ∈ A) is a
random variable with Poisson distribution Po(λ̃m(A)),

for any A, B ∈ B(Rd × Rd ) compact, disjoint, ♯(ω̃ ∩ A) and ♯(ω̃ ∩ B) are independent

So both the density and the velocities of the light particles are of order
m− 1

2
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Assumptions

Assumption w.r.t. U: U ∈ C∞
0 (Rd), spherical-symmetric, repulsive,

precisely,
(U1) ∃RU > 0, ∃h : [0,∞)→ [0,∞), s.t.,

U(x) = h(|x |), ∀x ∈ Rd ,
U(x) = 0 if |x | ≥ RU ,

h′(a) < 0, ∀a ∈ (0,RU),
h′′(0) < 0.

Assumptions w.r.t. ρ:

(A1) ∃E > 0 s.t. ρ(u, z) = 0 as long as u + U(z) < E .
−→ The initial energies of the light particles are bounded below

(A2) ρ(u,−z) = ρ(u, z), ∀z ∈ Rd , u ∈ [0,∞). ∃ρ0 : [0,∞)→ [0,∞),
∃R1 > 0 s.t. ρ(u, z) = ρ0(u) if |z | ≥ R1, u ∈ [0,∞).
−→ The initial distribution of the light particles is symmetric,
and except the very first duration, the distribution of the incoming
light particles does not dependent on the massive particle

(A3)
∫
Rd (1 + |v |3) supz∈Rd ρ(1

2 |v |
2, z)dv <∞. −→ A integrability of ρ
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Literature

Holley (1971): d = 1, interaction=collision
Dürr-Goldstein-Lebowitz (1980–1983), Calderoni-Dürr-Kusuoka
(1989): d ≥ 1, interaction=collision
simulation, e.g., Kim-Karniadakis (2015)

Kusuoka-Liang (2010), Liang (2014): plural massive particles,
interaction=potential interaction,
initial energies of all light particles are “high enough”
( ⇔ initial velocities of all light particles are “fast enough”)
=⇒ the interactions are not strong enough to “stop the light
particles”, so all light particles “pass through” their effective interaction
ranges, hence the effective interaction time durations of all light
particles are short enough
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Ray representation (Idea 1)

gives us the approximate time that the corresponding light particle enters
its effective interaction range!

E =
{
(y , v) ∈ Rd × (Rd \ {0}); y · v = 0

}
,

Ev =
{
y ∈ Rd ; y · v = 0

}
, v ∈ Rd \ {0},

Ψ : R×E → Rd × (Rd \ {0}), (s, (y , v)) 7→ Ψ(s, (y , v)) = (y − sv , v),
ν(dy, dv) ∈ ℘(E): ν(dy, dv) = |v|ν̃(dy ; v)dv , here ν̃(dy ; v) is the Lebesgue measure on Ev ,

Ω = Conf (R × E),

Pm(dω) = Pλm (dω): Poisson point process on Conf (R × E) with intensity λm(dr, dy, dv) ∈ ℘(Ω):

λm(dr, dy, dv) = m−1
ρ
( 1

2
|v|2, y − m−1/2rv − X0

)
drν(dy, dv),
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Freezing-approximation (Idea 2) (Main idea of Kusuoka-L.(2010), L.(2014))

When considering the evolution of each one light particle,
since the velocity of a light particles is of order m

− 1
2 and the velocity of the massive particle is of order 1,

if the initial energy of a light particle is large enough, i,.e,,
if |v | ≥ m− 1

2 (2C0 + 1) , here C0 :=
√

2RU∥∇U∥∞ , then
the effective interaction time duration is short enough
so the massive particle almost does not move during this period
so we can approximate the evolution of the light particle by the one
that the massive particle is frozen (← our freezing-approximation)

Notice:
If the initial energy of the light particle is NOT high enough, then the
sojourn time of even the freezing-approximation might be ∞!　
（Example：if the light particle comes exactly towards the massive
particle, and with its initial energy = the maximum of the potential
function）
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Formulation of the limiting process(I)

(our “freezing approximation”) for any (x , v) ∈ R2d and X ∈ Rd ,
d

dt
φ0(t, x , v ;X ) = φ1(t, x , v ;X )

d

dt
φ1(t, x , v ;X ) = −∇U(φ0(t, x , v ;X )− X )

(φ0(0, x , v ;X ), φ1(0, x , v ;X )) = (x , v).

（the same as the ODEs with respect to the light particles with the massive particle frozen and with m = 1）

(scattering) ψ(t, x , v ;X ) := lims→∞ φ0(t + s, x − sv , v ;X ), (x , v) ∈ E .
(first order approximation error of our freezing-approximation) for any
(x , v) ∈ E ,X ,V ∈ Rd , a ∈ R, let z(t; x , v ,X ,V , a) be the solution of{

d2

dt2 z(t) = −∇
2U(ψ0(t, x , v ,X )− X )

(
z(t)− (t + a)V

)
,

limt→−∞ z(t) = limt→−∞
d
dt z(t) = 0.

Remark: z(t; x, v, X , V , a) is linear with respect to V .

x(m1/2t + s,Ψ(s, x ,m−1/2v)) ≈ ψ0(t, x , v ;X (s − cm))

+m1/2z(t, x , v ;X (s − cm),V (s − cm),m
−1/2cm)
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Formulation of the limiting process(II)

The generator of our limiting process:

L =
1
2

d∑
k,l=1

akl
∂2

∂Vk∂Vl
+

d∑
k,l=1

bklVl
∂

∂Vk
+

d∑
k=1

Vk
∂

∂Xk
.

akl =

∫
E

( ∫ ∞

−∞
∇kU(ψ0(t, x, v ; X ) − X )dt

)
×
( ∫ ∞

−∞
∇lU(ψ0(t, x, v ; X ) − X )dt

)
ρ0(

1

2
|v|2)ν(dx, dv),

d∑
l=1

bklV
ℓ
l = −

∫
E

( ∫ ∞

−∞
∇2U(ψ0(t, x, v, X ) − X )

×z(t, x, v, X , V ,−t)dt
)
ρ0(

1

2
|v|2)ν(dx, dv).

Remark
a and b correspond to the 0-order and the 1-order of our
freezing-approximation,
(since there is only one massive particle now), a and b do not depend
on X indeed.
coincide with the model with collision interaction
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Main result

Our metric on C ([0,∞);R2d): for any w1,w2 ∈ R2d ,
dist(w1,w2) :=

∑∞
k=1 2−k

(
1 ∧maxt∈[0,k] |w1(t)− w2(t)|

)
.

Theorem
Assume (A1)–(A3) and (U1). Also, assume that

d >

√
∥h′′∥∞
−h′′(0)

+

√
∥h′′∥∞
−h′′(0)

+ 1. (1)

Then when m→ 0, the distribution of {(X (m)(t),V (m)(t)); t ≥ 0} under
P̃m converges to the diffusion process with generator L in
(C ([0,∞);R2d), dist).

Remark When −h′′(0) = ∥h′′∥∞, then (1) is satisfied as long as d ≥ 3.
(In a previous paper of L. (2018), we needed d > 2(1 + ∥h′′∥∞)(−h′′(0))−

1
2 + 1, which implies d ≥ 6 at least).
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Sketch of the proof (I)

Suffice to prove for t ∈ [0,T ∧ σn]. Here σn := inf{t > 0; |Vt | ≥ n}.
1 Ray representation,
2 Freezing-approximation: approximate x(s,Ψ(r , x ,m− 1

2 v)) by
φ0(m− 1

2 s,Ψ(m− 1
2 r , x , v ;X )) or ψ0(m− 1

2 (s − r), x , v ;X ), where

X = X (0) when proving that the force during the very first short
duration (definition given later) is negligible,
X = X (r̃) when estimating the effective interaction duration of the
light particle and when a measurable approximation is necessary,
X = X (s) when proving the convergence in the last step.

3 Decompose V (t) as

V (t) = a martingale term + a smooth term + a negligible term,

and prove the tightness of each term (in the Skorohod space).
4 Prove the convergence of each term, so the limiting process is a

solution of the martingale problem L, (that is, the distribution of{
f (X (t ∧ σn), V (t ∧ σn)) − f (X0, V0) −

∫ t∧σn
0 Lf (X (s), V (s))ds; t ∈ [0,T ]

}
is a martingale for any

f ∈ C∞
0 (Rd × Rd )). So OK by the martingale problem theory.
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Sketch of the proof (II)

5 Remove the singular light particles:
|x − π⊥v X (r̃)| ≥ mα and |v | ≥ m

γ
2 . (r̃ ≈ r − m

1
2 τ)

α > 1
2(d−1) and γ > 1

d+1 −→ The total affect from those light particles
that do not satisfy these conditions is small enough
α(3

√
C1/ε1 − d + 1) < 1

2 and
√
C1/ε1(2α+ γ) < 1 −→ All light

particles satisfying these conditions leave the effective interaction range
within a time duration short enough, hence the approximation errors of
our freezing approximations are small enough

6 Estimation of the effective interaction time duration:

t1(v , y) := ∃C2 + 1{|v |<2C0}ε
−1/2
1 log+

(
∃C3|v |−1y−1

)
.

both the freezing approximation and the light particle could be in the
effective interaction range only during [−τ, t1(v , |x − π⊥v X (·)|)].

Proof for the freezing approximation: use two invariants: the total energy and
(φ0 − X , φ1)2 − |φ0 − X |2|φ1|2

Proof for the light particle: use the result for freezing approximation and the error estimate

Remark: Our error estimate has an exponential order w.r.t. the
effective interaction time duration, so the log-order here is essential!
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Further Possible Generalizations

1 E = 0 ( i,.e,, no minimum constraint of the initial energies of the light
particles):
−→ The effective interaction time duration is not of log order any
more
−→ Some more accurate estimate necessary. In progress now.

2 A model with the potential diverges to infinity at 0
(for example, the Weeks-Chandler-Andersen potential or the Lennard-Jones potential):
−→ ∇2U is not bounded, so the error estimate of the positions is not
enough to apply the estimate of the difference between forces
−→ Expected that the method for Problem 1 is applicable
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Thank you!
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